Low-cost Sodium Battery for Grid Scale Energy Storage CERAMATEC

Objective: Demonstrate low-cost sodium batteries operating at lower temperature (< 200 °C) than state of the art sodium batteries (Na-S, ZEBRA) based on highly conductive NaSICON ceramic membranes.

Technical Accomplishments

- Low-cost tubular NaSICON for longterm operation at < 200 °C w Na metal
- Novel plastic/ceramic/metal sealing methods appropriate for NaSICON & < 200 °C operation

250 Wh size Closed-end NaSICON Tube sub-assemblies

Low-cost Sodium Battery for Grid Scale Energy Storage CERAL

Technical Accomplishments

- Distinct cathode formulations (NiCl₂ & I₂) based on unique aqueous, organic, and molten salt catholytes.
- 100 Wh and 250 Wh cells showed desirable performance during 1+ year of operation.
 - Minimal degradation for long cycles
 - 80+% Energy efficiency
 - Comparable performance at conventional operation condition of ZEBRA, Na-S
 - Low cost from low RMC, O&M and CAPEX

Path Forward

- NaSICON production development
- Unit cell optimization for multi-year operation
- Design & construction of multi kWh module
- Application specific techno-economic analysis

250 Wh Na-NiCl₂

Future kWh Module

